Preliminary communication

Chelated bis-silyl-platinum complexes

C. EABORN, T.N. METHAM and A. PIDCOCK

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received April 18th, 1973)

SUMMARY

The preparations are described of some bis-silyl-platinum complexes in which the Si-Pt-Si linkage forms part of a 4-, 5- or 6-membered ring.

The dihydrides o-(HMe₂Si)₂C₆H₄ and o-(HMe₂Si)C₆H₄CH₂SiMe₂H have been found to react with [PtL₂(C₂H₄)] (L = PPh₃) at room temperature to give the 5- and 6-membered cyclic bis-silyl complexes (I), m.p. $146-149^{\circ}$ (dec.) and (II), m.p. $142-146^{\circ}$,

$$L_{2}Pt \xrightarrow{\text{Me}_{2}} L_{2}Pt \xrightarrow{\text{Si-CH}_{2}} Me_{2}$$
(I) (II)

respectively. The disiloxane (HPh₂ Si)₂ O analogously gives a 4-membered cyclic species [Pt(SiPh₂ OSiPh₂)L₂], m.p. $166-170^\circ$, at 45° ; (HMe₂ Si)₂ O, however, gives only the hydrido(silyl) complex, cis-[PtH(SiMe₂ OSiMe₂ H)L₂], m.p. $100-104^\circ$, at 45° , but the latter cyclizes at 75° to give [Pt(SiMe₂ OSiMe₂)L₂], m.p. $172-174^\circ$. The dihydrides o-(HMe₂ SiCH₂)C₆H₄ and HMe₂ Si(CH₂)₄ SiMe₂ H, which could in principle give complexes involving 7-membered rings, in fact give only the hydrido(silyl) complexes, cis-[PtH{SiMe₂ CH₂ C₆ H₄ (CH₂ SiMe₂ H)-o}L₂], m.p. $75-78^\circ$, and cis-[Pt{SiMe₂ (CH₂)₄ SiMe₂ H}L₂], m.p. $110-112^\circ$, which do not cyclize at 75° .

The compounds analogous to (I) and (II), but with PMePh₂ (L') in place of PPh₃ ligands, are readily formed on treatment of either [Pt(PMePh₂)₄] (neat) or [Pt(PMePh₂)₂ (CO₃)] (in benzene) with the appropriate dihydrides at room temperature.

The disiloxane $(HMe_2Si)_2O$ gives the cyclic $[Pt(SiMe_2OSiMe_2)L'_2]$ directly on reaction with $[Pt(PMePh_2)_4]$ in benzene under reflux or with $[Pt(PMePh_2)_2(CO_3)]$ in the same solvent at room temperature.

Compounds (I) and (II) react readily with 1,2-bis(diphenylphosphino)ethane to give the doubly-chelated species (III), m.p. 263–266°, and (IV), m.p. 246–248°, respectively. Compounds (I) and (II) also react readily with 2 molar proportions of bromine, methyl iodide, or phenylactylene with cleavage of both Si-Pt bonds; in the case of (I) [(II) was not examined in this respect], use of only 1 molar proportion of the reagents leads to the same products along with unchanged (I), indicating that once the first Si-Pt has been broken the second is cleaved markedly more rapidly.

We thank the Science Research Council for the award of a Research Studentship (to T.N.M.), and Engelhard Industries Limited for a loan of platinum.